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Improving depth resolution of diffuse optical tomography

with an exponential adjustment method based on

maximum singular value of layered sensitivity
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The sensitivity of diffuse optical tomography (DOT) imaging exponentially decreases with the increase of
photon penetration depth, which leads to a poor depth resolution for DOT. In this letter, an exponential
adjustment method (EAM) based on maximum singular value of layered sensitivity is proposed. Optimal
depth resolution can be achieved by compensating the reduced sensitivity in the deep medium. Simulations
are performed using a semi-infinite model and the simulation results show that the EAM method can
substantially improve the depth resolution of deeply embedded objects in the medium. Consequently, the
image quality and the reconstruction accuracy for these objects have been largely improved.
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Diffuse optical tomography (DOT) is an emerging
technology that can reconstruct the optical proper-
ties of internal biological tissue from the region un-
der investigation[1]. It is noninvasive and portable,
and can produce real-time images of clinically rele-
vant parameters[2]. When photon propagates in tis-
sue, the sensitivity of diffuse-light measurements drops
off quickly with penetration depth. This leads to poor
depth resolution in deep tissue[3]. Because of this draw-
back, many important biological investigations such as
breast tumor or cortex activations of the brain have been
limited since those changes generally happen beneath
several millimeters of this investigated tissue.

Boas et al. showed that increasing the number of
overlapping measurements or enlarging source-detector
separation can achieve improved depth resolution for
near-infrared imaging[4]. Also, hybrid image reconstruc-
tion methods such as near-infrared DOT combined with
prior magnetic resonance imaging (MRI) structural in-
formation have also been proved to be able to over-
come the depth limitation for DOT imaging in certain
extent[5]. In addition, both the spatial varying regular-
ization (SVR) method[6] and the layered-based sigmoid
adjustment (LSA) method[7] played an important role
in improving depth resolution of DOT imaging. In this
letter, we present an exponential adjustment method
(EAM) based on maximum singular value of layered sen-
sitivity, which can improve depth resolution of the DOT
imaging by compensating the decreased sensitivity in the
deep medium. This novel method is validated by simula-
tions of semi-infinite medium with the depth of 60 mm,
in which the object is individually located in different
depths.

The photon propagation in highly scattering medium
obeys diffusion equation[8]. When only absorption
changes are considered, the analytic solution of the
diffusion equation can be obtained by[9]

∆OD = − ln

(

Φpert

Φ0

)

=

∫

∆µa(r)L(r)dr, (1)

where ∆OD is the change in optical density, Φ0 is the
simulated photon fluence in a semi-infinite medium, and
Φpert is the simulated photon fluence with the absorbers
included. The second part of Eq. (1) is known as the
modified Beer-Lambert law, in which ∆µa(r) is the
change in absorption coefficient and L(r) is the effective
average path length of the photons.

Equation (1) is generalized for a set of discrete vox-
els and written as y = Ax, where y is the vector of
measured changes in optical density from all the mea-
surements, x is the vector of the unknown change in ab-
sorption coefficient in all of the voxels, and the matrix
A describes the sensitivity that each measurement di-
vides the change in absorption within each voxel in the
medium. The sum of matrix A by rows indicates the
overall sensitivity of each voxel from all measurements,
and it displays an exponential decrease distribution in an
increased depth dimension[7].

To compensate the dramatic decrease in sensitivity, an
exponential diagonal matrix M based on layered maxi-
mum singular values is multiplied on the forward matrix
A. The adjusted forward matrix A# and the weight ma-
trix M are written as
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where γ is termed as adjustment exponent and it is em-
pirically determined in the range of 0 to 3; M1, M2, · · · ,
ML are the maximum singular values for the forward
matrix from the first top layer to the bottom Lth layer
when assuming that the reconstructed image contains L
layers. These layered singular values are exponentially
distributed[9], which guarantees that these elements in
weight matrix M take exponential configuration as γ
changed.

In the weight matrix M, (ML)γ is the adjustment
coefficient for the first layer, and (ML−1)

γ for the sec-
ond layer, and so on. (M1)

γ is the adjustment coefficient
for the Lth layer (i.e., bottom layers). That means these
elements are inversely used to adjust the sensitivity dis-
tribution. Thus, the new reconstruction equation for
EAM is given by x = MAT(AM2AT + λσmaxI)

−1y.
Changing the value of γ will vary the dynamic range of

the weight matrix M, therefore it will ultimately change
the sensitivity distribution between deep and superficial
layers. For example, with the increase of adjustment ex-
ponent γ, M will obtain a large dynamic range, thus the
elements for deep layers can acquire a larger adjustment
coefficient compared with those in superficial layers.
On the contrary, lessening the adjustment exponent, the
dynamic range for the weight matrix will decrease; cor-
respondingly, the elements for deep layers will obtain a
small adjustment coefficient. Figure 1 shows the sensi-
tivity distributions in x-z plane when γ is changed from
0 to 3 with an increment of 0.5 and the corresponding
sensitivity curves in depth dimension.

It can be seen from Fig. 1(a) that the larger sensitivity
occurs in superficial layers when γ is equal to zero, which
agrees with the general investigation, i.e., photon sensi-
tivity exponentially decreases with penetration depth[3].
With the increase of γ from 0 to 3, the sensitivity of su-
perficial layers is decreased and larger sensitivity biases
towards the deep layers, as shown in Figs. 1(b)—(g),
which would be anticipated to bring about improved
depth resolution for deep object imaging.

Fig. 1. Sensitivity profiles within x-z slice with varying ad-
justment exponent γ from 0 to 3 at an increment of 0.5 and
their corresponding sensitivity profiles with x = 0 in the x-z
slice. The depth for imaging fields is 60 mm from −10 to −70
mm. The scale in the sensitivity is normalized.

Fig. 2. The first column shows real images with object lo-
cated in depths −10, −30, −50, −60, and −70 mm from up
to down and their reconstructed images with LSA, SVR, and
EAM methods are shown in the second, third, and fourth
columns, respectively.

To illustrate the validation of this sensitivity adjust-
ment, we performed simulations based on a semi-infinite
medium. The imaging field area for this medium was
set to be 60 × 60 (mm) in x-y plane and the depth in z
direction was 60 mm (from −10 to −70 mm). The back-
ground absorption and reduced scattering coefficients
for the medium were 0.01 and 1.0 mm−1, respectively.
Absorption inclusions were located separately in depths
−10, −20, −40, −60, and −70 mm, as shown in Fig. 2
(the first column). The absorption coefficient and ra-
dius for these inclusions were 0.03 mm−1 and 3 mm,
respectively. A hexagonal configuration of 7 sources and
24 detectors was arranged on the surface of the imaging
region, which produced 168 measurements[11]. Random
Gauss-distributed noise was added to the simulated data
to achieve measurements with approximate signal-to-
noise ratio (SNR) of 1000.

The reconstructed images for the EAM method are
shown in Fig. 2 (the fourth column). The adjustment ex-
ponent for EAM images were empirically chosen as 0, 1.1,
1.5, 1.8, and 3, respectively. For comparison, the SVR[6]

and LSA[7] techniques were also implemented to conduct
reconstruction under the same imaging conditions, and
the reconstruction equations for these methods were re-
spectively given by x = D ·DAT(AD2AT + λI)−1y and

x = DAT(AD2AT +λI)−1y, in which D was a diagonal
matrix generated by LSA method and A was the initial
forward matrix. The SVR and LSA images are respec-
tively shown in the second and third columns of Fig. 2.
The L-curve method[12] was applied to choose optimal
regularization value for each method. The voxel size in
these reconstructed images was 1 mm−3.

We utilized two criteria to evaluate the quality of re-
constructed image: contrast-to-noise ratio (CNR)[13] and
positional error (PE). CNR indicates whether an object
can be clearly detected from the background of recon-
structed images, while PE is the distance between centers
of the real object and the detected object. Larger CNR
values and smaller PE values are considered as higher
image quality. The evaluations for these reconstructions
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Table 1. CNR and PE Values for the Reconstructed
Images Shown in Fig. 2

Depth LSA SVR EAM

(mm) CNR PE (mm) CNR PE (mm) CNR PE (mm)

−10 32.65 0.46 26.69 0.21 43.01 0.12

−30 1.90 12.77 4.78 1.34 13.54 0.31

−50 0.35 31.69 0.32 20.15 10.06 0.28

−60 0.63 41.16 0.20 32.15 10.39 0.45

−70 0.73 49.81 0.16 38.73 18.08 0.13

are shown in Table 1.
It is found that all these three methods can accurately

reconstruct the superficial objects located in the depth
of −10 mm. However, with the increase of object depth,
the objects reconstructed with LSA and SVR cannot ac-
curately be recognized from the background, in response,
the smaller CNR and larger PE for these reconstruc-
tions from depths −30 to −70 mm are shown in Table
1. These indicate that the LSA and SVR methods can-
not effectively locate these deep objects in imaging fields.
Compared with LSA and SVR, the EAM approach can
achieve satisfactory image quality and optimal recon-
struction accuracy for these objects embedded in deep
medium. Correspondingly, the high CNR and small PE
values have been acquired for their images, as shown in
Table 1, which demonstrates that the scheme is a really
effective approach for improving the depth resolution of
DOT imaging.

It is necessary to point out that the adjustment expo-
nent γ in EAM is an important parameter for obtaining
these optimal reconstructions. In this letter, this param-
eter is determined empirically and in our future study it
is anticipated to be adaptively or automatically chosen
for achieving optimal reconstructions.

In summary, we have presented the EAM method and
investigated its validation in improving the depth reso-
lution of DOT imaging through simulations based on a
semi-infinite model with objects located in depths from
−10 to −70 mm. Simultaneously, we have made a com-
parison among our proposed EAM method and the SVR
and LSA techniques, and the results clearly illustrate
that our EAM can improve the depth resolution of deep

object imaging. These results also demonstrate that
the sensitivity compensation technique is effective. It
is worth pointing out that the deep objects can be ac-
curately reconstructed without utilizing anomaly infor-
mation from MRI or X-ray. A series of experiments is
required for the validation of the methodology in practi-
cal applications.
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